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The static approximation suggests that, for a given hole area, the use of a long narrow slot in a beam pipe
gives a reduced coupling impedance. But for a long slot the slot length may be comparable with the wave-
length, making the static approximation a poor one. In this paper we derive expressions for the generalized
polarizability and susceptibility@Cheng, Fedotov, and Gluckstern, Phys. Rev. E52, 3127~1995!# of an ellip-
tical hole in a thin plane metallic screen, as a function of hole dimensions and wavelength. In particular, we
construct a variational form that allows us to obtain an approximate analytic result for the resonant frequency
of a cavity with such a hole. In the calculations we include the effects of finite wavelength, but still confine our
attention to reduced wavelengths no smaller than the primary hole dimensions. We then use these results to
estimate the coupling impedance of a long narrow elliptical slot in a beam pipe, and show that the effect of
finite wavelength is important.@S1063-651X~96!10508-0#

PACS number~s!: 29.27.Bd, 41.20.2q

I. INTRODUCTION

The penetration of electric and magnetic fields through a
hole in a metallic wall plays an important role in many de-
vices. In an accelerator, such holes in the beam pipe serve to
allow access for pumping, devices for beam current and
beam position measurement, coupling between cavities, etc.
As a consequence, the beam generates wakefields in the
beam pipe when it passes by such holes and these wakefields
are capable of affecting beam quality and stability. In all
these and other similar situations, the quantities of impor-
tance are the polarizability and susceptibilities of such holes.

When we consider the coupling impedance of a hole in
the wall of a beam pipe@2# of rectangular cross section, we
must evaluate the following integral over the hole on the
inner surface of the beam pipe:

I5E E
hole

ds dt@Es
~2!Ht

~1!2Et
~2!Hs

~1!#. ~1.1!

Here the normal to the wall is in then direction, the azi-
muthal direction is denoted bys, and the directiont is par-
allel to the axis of the beam pipe. The superscript~1! refers
to the fields with no hole and the superscript~2! refers to the
fields in the presence of the hole.

The integral in Eq.~1.1! is exactly the same as the integral
used to describe the coupling between waveguides and/or
cavites@3#. In fact it is also the integral which describes the
detuning of a cavity by a hole in a plane cavity wall, with the
superscripts~1! and~2! having the same meaning. It is there-
fore reasonable to relate the frequency dependence of the
coupling impedance in Eq.~1.1! to the detuning of the cavity
by a hole whose dimensions may be as large as the reduced
wavelength.

The conventional treatment of Eq.~1.1! proceeds by way
of the polarizability and susceptibilities of the hole in the
wall @4,3#. In a previous paper@1# we presented the method
of calculating the polarizability and susceptibility for a cir-
cular hole in a thick metallic plate as a function of hole

dimensions and wavelength. We redefined polarizabilities in
terms of the cavity detuning and constructed a generalized
polarizability and susceptibility. In this way, we included the
frequency dependence of the polarizability and susceptibility
as well as the contributions of higher multipole moments of
the hole. We should note that this generalized polarizability
and these susceptibilities should only be seen as intermediate
vehicles to relate the coupling integrals of interest to the
detuning of the cavity by the hole. In our earlier work@1# we
showed that the variational approach also allows us to derive
analytically the low frequency corrections for the polarizabil-
ity and susceptibilities of a hole in a thin wall, correct to the
first order ink2.

In the present paper we use the previous approach@1# to
obtain expressions for the generalized polarizability and sus-
ceptibilities of an elliptical hole in a thin plane metallic
screen, as a function of hole dimensions and reduced wave-
length. These expressions are derived in Sec. III and appear
in Eqs. ~4.1! and ~4.4!, correct to the first order ink2. The
free parametera in Eq. ~4.4! is treated as a variational pa-
rameter and chosen in Eq.~4.11! to minimize the suscepti-
bility.

Our interest in an elliptical hole is guided by the fact that
narrow slots are considered to be the best choice for pump-
ing holes in the design of modern high-intensity accelerators.
It is clear that the image currents on the wall will flow more
easily around a long thin slot than around a circular hole of
the same area. For this reason a long thin slot gives a lower
coupling impedance. But the length of the slot may then
become comparable with the wavelength and the static val-
ues of polarizability and susceptibilities may no longer be
adequate. Therefore, it becomes important to estimate the
frequency correction for the coupling impedance of a narrow
slot. Our results allow us to obtain a more accurate expres-
sion for the coupling impedance of an elliptical hole at low
frequencies. Specifically, for a long narrow slot, the fre-
quency correction of the impedance turns out to be much
larger than the static value.
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II. GENERALIZED POLARIZABILITY
OF AN ELLIPTICAL HOLE

In an analysis for the circular hole@1# we showed how to
construct a variational form for the resonant frequency of a
cavity with such a hole. For our present purposes we use the
same general form of the equation for the calculation of the
frequency of the detuned cavity,

tanbNL

lN
5(

n
(
m

KNn~ M21!nmKNm . ~2.1!

Here bn
25k22gn

2 where thegn
2 are the eigenvalues of the

two-dimensional scalar Helmholtz equation in the cavity re-
gion with the appropriate boundary conditions, andkc/2p is
the frequency. The quantitiesM nm comprise a symmetric
matrix defined by

M nm52 (
nÞN

lncotbnLKnmKnn1(
s

lstanbsg/2KsmKsn .

~2.2!

Here

Knn[E
S1

dSen• fn , Ksn[E dSes•fn , ~2.3!

whereen , es are the complete sets for the field expansion in
the cavity and iris regions, and thefn is the complete set for
the expansion of the electric field at the interface between the
cavity of lengthL and the iris of lengthg. As will be seen in
Appendix A, we take a cavity of rectangular cross section
with dimensionsA andB, with the iris hole located at the
center of the rectangle.

Note that we have separated the termn5N and moved it
to the left side in Eq.~2.1! since we shall be looking at the
TM 0Nl cavity mode corresponding tobNL5l p or

kNl
2 5

l 2p2

L2
1kN

2 , ~2.4!

wherel is an integer, andkN
2 is the eigenvalue for the cavity

waveguide. Here we use notation

ln5
Z0
Zn

5H k/bn , TM

bn /k, TE ,

with Zn being the impedance of the ‘‘cavity’’ wave guide
andZ05Am0 /e0 being the impedance of free space. We use
latin subscripts (n,m,N, . . . ) for thecavity region and greek
subscripts (n, m, s, . . .! for the iris region.

We now consider only the case ofg50 ~zero thickness of
the wall! and by separating out then51, m51 term we are
able to write Eq.~2.1! approximately as

bNtanbNL>
~KN1

x !2

M11
x /k

, ~2.5!

with

M11
x

k
52 (

nÞN

cotbnL

bn
~Kn1

x !25 (
nÞN

cothrnL

rn
~Kn1

x !2,

~2.6!

where

rn[Akn
22k2, ~2.7!

Kn1[E
S1

dSen•f1 . ~2.8!

In writing Eq. ~2.6! we showed earlier@1# that by using
the exact static expression forf1(t,s) ~where the azimuthal
direction is denoted bys and the directiont is parallel to the
axis of the beam pipe! we can obtain a result for the gener-
alized polarizability which is accurate through terms propor-
tional to k2. For the trial function of an elliptical hole in a
plane cavity wall we choose

f1~ t,s!52“S 12
t2

a2
2
s2

b2D
1/2

52 ¹f0 , ~2.9!

wherea andb are the semimajor axes in the axial and azi-
muthal directions of the beam pipe, respectively. Then Eq.
~2.8! becomes

Kn1[E
S1

dS“fn•“f05kn
2E

S1

dSfnf0 , ~2.10!

where we useden52“fn and¹2fn1kn
2fn50. For large

N the left hand side~LHS! of Eq. ~2.5! can be rewritten as

bNtanbNL>
bN
2L2l 2p2

2L
5

~k22kNl
2 !L

2
. ~2.11!

Then from Eqs.~2.5!, ~2.10!, and~2.11! we have

L~k22kNl
2 !

2

5kN
4 S E dSfNf0D 2 YF (

nÞN

kn
4S E dSfnf0D 2

Akn
22k2

G .
~2.12!

Using the definition of generalized polarizability introduced
earlier @1#,

x[
k22kNl

2

kNl
2 ENl

2 ~0!
, ~2.13!

we obtain

x52kN
4 I N0

2 YFLS (
nÞN

kn
4I n0

Akn
22k2

D kNl2 ENl
2 ~0!G ,

~2.14!

where we defineI n05*dSfnf0, and whereENl (0) is the
normal component of the electric field for modeN, l at the
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hole location when the hole is absent. The fieldEW Nl is nor-
malized so that its square, integrated over the cavity volume,
is unity.

The various terms in Eq.~2.14! can be evaluated explic-
itly, as shown in Appendix A. Our final result forx is

x5x0F12
P̃2a2

5
2
Q̃2b2

5
2
k2b2K~m!

5E~m!
G , ~2.15!

whereP̃5Pp/A, Q̃5Qp/B, andx0 is the static polarizabil-
ity for an elliptical hole

1

x0 5
3

2pab2
E~m!. ~2.16!

HereK(m) andE(m) are complete elliptic integrals of the
1st and 2nd kind, andm512b2/a2. The quantities2 P̃2,
2Q̃2 are the normalized second derivatives ofEn with re-
spect tot ands.

III. GENERALIZED SUSCEPTIBILITY
OF AN ELLIPTICAL HOLE

For the frequency calculation we again use Eq.~2.1!. For
the TM1Nl mode we have

bNtanbNL>
~KN1

TM!2

M11
c /k

, ~3.1!

and for the TE1Nl mode

tanbNL

bN
>

~KN1
TE!2

kM11
c , ~3.2!

whereM11
c is given by

M11
c 52 (

nÞN

k

bn
cotbnLKn1

2 2 (
nÞN

bn

k
cotbnLKn1

2 ,

~3.3!

M11
c 5k(

nÞN

cothrnL

rn
~Kn1

TM!22
1

k(
nÞN

rn8cothrn8L~Kn1
TE!2.

~3.4!

Herern5Axn22k2 andrn85Ayn22k2, wherexn
2 andyn

2 are
the eigenvalues in the Helmholtz equation for TM and TE
modes, respectively. In the limiting case of largen we have
cothrnL→1, and the equation forM11

c becomes

M11
c 5k(

nÞN

~Kn1
TM!2

Axn22k2
2
1

k(
nÞN

Ayn22k2~Kn1
TE!2. ~3.5!

Once again, for largeN the LHS of Eq.~3.1! can be rewritten
as

bNtanbNL>
L

2
~k22kNl

2 !, ~3.6!

and the LHS of Eq.~3.2! can be rewritten as

tanbNL

bN
>
L

2 S L

pl D 2~k22kNl
2 !. ~3.7!

Using Eqs.~3.1!, ~3.2!, and ~3.5!, Eqs. ~3.6! and ~3.7! be-
come

L

2
~k22kNl

2 !5k2~KN1
TM!2/S for TM1Nl , ~3.8!

L

2
~k22kNl

2 !5p2l 2~KN1
TE!/L2S for TE1Nl , ~3.9!

where

( [k2(
nÞN

~Kn1
TM!2/Axn22k22 (

nÞN
Ayn22k2~Kn1

TE!2.

~3.10!

In order to obtain the expressions forKn1
TM , Kn1

TE we are
guided by our experience for the circular hole@1# and use the
trial function whose components are

f 1t5A12u22v22
]f

]t
, f 1s52

]f

]s
, ~3.11!

with f5aauA12u22v2, where we definet5ua and
s5vb. Then for (n, TM!

Kn1
TM5E

S1

dSen•f152E dS“fn•f1

52E dS
]fn

]t
f01E dS“fn•“f

5I n08 1I n09 , ~3.12!

wheref05A12u22v2,

I n08 5bE E dudvfnS ]f0

]u D , ~3.13!

I n09 5xn
2abE E dudvfnf; ~3.14!

for (n, TE!

Kn1
TE5E dS~ n̂3 ¹cn!•f1

5aE E dudvcn

]f0

]v
2E dSS ]cn

]t

]f

]s
2

]cn

]s

]f

]t D
5Yn0 , ~3.15!

with

Yn05aE E dudvcn

]f0

]v
. ~3.16!

Using the definition of generalized susceptibility introduced
earlier @1#,
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c52
k22kM

2

k2HM
2 ~0!

, ~3.17!

Eqs. ~3.8! and ~3.9! become the variational forms for the
susceptibilities, which can be evaluated explicitly, as shown
in Appendix B. HereHM(0) is the normalized tangential
component of the magnetic field for modeM at the hole
location when the hole is absent.

The final expressions for the susceptibilities are

cTE5css
0 H 12

l0
2

5
1
k2b2

5 F21
K~m!2E~m!

~m21!K~m!1E~m!

22a
K~m!2E~m!

~m21!K~m!1E~m!

1
a2

12m S K~m!2E~m!

~m21!K~m!1E~m!

1
m@2E~m!2K~m!#

~m21!K~m!1E~m!
D G J . ~3.18!

Herecss
0 is the static susceptibilty for an elliptical hole~in

the azimuthal direction!,

1

css
0 5

3@~m21!K~m!1E~m!#

2pb2am
, ~3.19!

and l0
25 P̃2a21Q̃2b2. The quantities2 P̃2,2Q̃2 are the

normalized second derivatives ofHs with respect tot,s and

cTM5css
0 H 12

l0
2

5 S 112a
a2xN

2

l0
2 D 1

k2b2

5 F2
1

K~m!2E~m!

~m21!K~m!1E~m!
22a

K~m!2E~m!

~m21!K~m!1E~m!

1
a2

12m S K~m!2E~m!

~m21!K~m!1E~m!

1
m@2E~m!2K~m!#

~m21!K~m!1E~m! D G J , ~3.20!

wherexN
25 P̃21Q̃2. Equations~3.18! and ~3.20! are varia-

tional forms with respect to the parametera. The minimum
values ofc occur whenaTE and aTM are given by Eqs.
~B35! and ~B36!.

IV. DISCUSSION

In order to obtain a clear physical picture we represent our
results in terms of field derivatives at the hole, since the
fields must satisfy the Helmholtz equation for finitek.

In the case of the polarizability we rewrite Eq.~2.15! in
the following form:

x5x0F11ett
a2

5
1ess

b2

5
1
k2b2

5

K~m!

E~m! G , ~4.1!

with

ett5
]2En

]t2 YEn~0!, ~4.2!

ess5
]2En

]s2 YEn~0!. ~4.3!

It is at first surprising that our results for the susceptibility
are different for the TE and TM modes, since the cavity
walls have been removed to infinity. But the TE and TM
modes have different higher derivatives at the hole. There-
fore, we can write a single expression which covers both
cases. Specifically, we rewrite Eqs.~3.18! and ~3.20! in the
following form:

c5css
0 F11

a2

5
htt
s1

b2

5
hss
s 1

k2b2

5
~u12va1a2w!

2
2

5
aa2~hts

t 2htt
s !G , ~4.4!

which is valid for either a TM or TE mode. Here

2htt
s52

]2Hs

]t2 YHs~0!5 P̃25
P2p2

A2 , ~4.5!

2hss
s 52

]2Hs

]s2 YHs~0!5Q̃25
Q2p2

B2 , ~4.6!

hts
t 2htt

s5
]2Ht

]t]s YHs~0!2
]2Hs

]t2
/Hs~0!5H P̃21Q̃2, TM

0, TE
,

~4.7!

with Hs(0) corresponding to the value ofHs that would exist
at the location of the center of the hole in the absence of a
hole. The quantitiesu, v, andw are defined by the relations

u521
K~m!2E~m!

~m21!K~m!1E~m!
, ~4.8!

v52
K~m!2E~m!

~m21!K~m!1E~m!
, ~4.9!

w5
1

12m F ~12m!K~m!1~2m21!E~m!

~m21!K~m!1E~m! G . ~4.10!

The minimum value ofc occurs when

a52
v
w

1
1

w

a2

b2k2
~hts

t 2htt
s !. ~4.11!

Then we can write

c5css
0 F11

a2

5
htt
s1

b2

5
hss
s 1

k2b2

5 S u2
v2

w D
1
2

5

a2v
w

~hts
t 2htt

s !2
1

5

a4

w

~hts
t 2htt

s !2

k2b2 G ~4.12!

or
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c5css
0 F11

a2

5
htt
s1

b2

5
hss
s 1

k2b2

5
A1

2

5
a2B~hts

t 2htt
s !

2
1

5

a4

k2b2
C~hts

t 2htt
s !2G , ~4.13!

with

A521
mE~m!@K~m!2E~m!#

@~m21!K~m!1E~m!#D~m!
, ~4.14!

B5
~m21!@K~m!2E~m!#

D~m!
, ~4.15!

C5
~12m!@~m21!K~m!1E~m!#

D~m!
. ~4.16!

Here

D~m![~2m21!E~m!1K~m!~12m!. ~4.17!

The results obtained above can be used to estimate the
frequency corrections for the polarizability and susceptibili-
ties of a hole for different values ofb/a with the correspond-
ing field configuration.

In the present paper our main problem of interest is the
case when the magnetic field~in the azimuthal direction! is
perpendicular to the longest dimension of the elliptical hole.
In Appendix C we consider the case where the magnetic field
is parallel to the long dimension of the hole.

V. THE COUPLING IMPEDANCE
OF A LONG NARROW ELLIPTICAL SLOT

In the design of modern high-intensity accelerators, nar-
row slots oriented along the chamber axis are the best choice
for pumping holes, giving low impedance for a finite hole
area. Therefore, in this section we apply our results to esti-
mate the coupling impedance of a long narrow elliptical slot.
For this we consider a beam traveling along the axis of a
beam pipe. We also consider a long and narrow elliptical slot
in the pipe wall. Therefore, we can write approximately
m512(b2/a2)→1, E(m)→1, and K(m)→ ln(4a/b). De-
noting the t direction by z and using Eq.~4.1!, with
En→e2 jkz, ett52k2, and ess50, for the polarizability of
such a slot we obtain

x5x0S 12
k2a2

5 D . ~5.1!

In the same limit, using Eq.~4.4!, the expression for the
susceptibility becomes

c5css
0 S 122

k2a2

5
1~a21!2

k2a2

5 D . ~5.2!

The minimum of this expression occurs whena51, giving

c5css
0 S 12

2

5
k2a2D . ~5.3!

The definition of the longitudinal coupling impedance is

Zi~k!52
1

I 0
E

2`

`

dzEz~0,z;k!ejkz, ~5.4!

where thez direction is along the pipe axis. The integral can
be rewritten in the form

uI 0
2uZi~k!52E

hole
dSEzH1u , ~5.5!

where the subscript 1 denotes the fields in the lossless pipe
without the obstacle.

For holes whose dimensions are small compared to the
wavelength, the integral can be expressed in terms of the
fields E1r ,H1u near the hole and the electric polarizability
and magnetic susceptibility of the hole. In our case, we have

Zi~k!

Z0
5

jk

8p2R2 ~c2x!, ~5.6!

whereR is the radius of the pipe andc, x are the generalized
susceptibility and polarizability of a hole, respectively@1#.
Then, using Eqs.~5.1! and ~5.3!, we have

Zi~k!

Z0
5

jk

8p2R2

css
0 x0

c tt
0 S 12

k2a2

5

c tt
0

css
0 D , ~5.7!

where we used the relation 1/c tt
011/css

0 51/x0 for an ellip-
tical hole and the fact thatc tt

0@css
0 . Using the same approxi-

mation of a narrow slot, the expressions for the static polar-
izabilty and susceptibilities become

x05
2pab2

3E~m!
→

2p

3
ab2, ~5.8!

css
0 5

2pab2m

3@~m21!K~m!1E~m!#
→

2p

3
ab2, ~5.9!

c tt
05

2pa3m

3@K~m!2E~m!#
→

2p

3

a3

@ ln~4a/b!21#
. ~5.10!

Finally we obtain

Zi~k!

Z0
5

jkab2

12pR2 H b2a2 F lnS 4ab D21G2
k2a2

5 J . ~5.11!

In Eq. ~5.11! the first term is the static approximation and the
second term is the new correction obtained by considering
the frequency dependence of the polarizability and suscepti-
bilities. Note that the frequency dependent correction re-
duces the inductive impedance obtained in the static approxi-
mation.

For commonly used values ofb/a'1/5, the frequency
correction becomes important even forka'0.3. And in the
case whereb!a the impedance behavior will be essentially
that of the correction term. Therefore, the frequency correc-
tion in such cases is very important.

For the rectangular narrow slot, in the static approxima-
tion the numerical result contains terms proportional to
w4/l andw3, with terms proportional tow2l being can-
celed, wherew and l are the width and the length of the
slot, respectively@5#. By considering the frequency depen-
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dence, in analogy with an elliptical slot, one would now
expect to have similar terms proportional tow2l (k2l 2),
which will play an essential role for small values ofw/l .

VI. SUMMARY

We used the method developed earlier@1# to obtain the
frequency dependence of the polarizability and susceptibili-
ties of an elliptical hole in a thin plane metallic screen. We
then used the results to estimate the coupling impedance of a
long narrow elliptical slot in a beam pipe.

The frequency correction of the impedance turns out to be
much larger than the static value for long narrow slots.
Therefore it is important to take this correction into account,
when one works with a long narrow slot. We should note
that our results are for a thin metallic screen where the thick-
ness is less than the slot width. We also note that our results
for an elliptical hole in a plane wall are a good approxima-
tion for a slot in a real beam pipe, where the slot is parallel to
the beam. But when a long narrow slot is perpendicular to
the beam one has to take into account the curvature of the
beam pipe.
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APPENDIX A: EXPLICIT DERIVATION
OF THE POLARIZABILITY

Here we present the detailed calculation of the polariz-
ability from the variational form of Eq.~2.14!. We first find
the electric field normal to the hole at the hole location in the
absence of the hole. We write

E'5CeNsin
l pn

L
, eN52“fN , ~A1!

En5C
L

l p
fNkN

2 cos
l pn

L
. ~A2!

Then from*E2dv51 we get

C25
2l 2p2

L3kNl
2 ~A3!

and

kNl
2 ENl

2 5
2kN

4fN
2 ~0!

L
. ~A4!

Therefore for the generalized polarizability we have

x5@ I N0
2 #Y FfN

2 ~0! (
nÞN

kn
4I n0

2

Akn
22k2

G . ~A5!

We obtain the expressions forfn andfN by considering the
rectangular form of the cavity waveguide

fn5C̃ cos
ppt

A
cos

qps

B
,

fN5C̃ cos
Ppt

A
cos

Qps

B
, ~A6!

wherep, q, P, andQ are odd numbers, in order to satisfy the
boundary conditions att56A/2 ands56B/2. We note that
P andQ are introduced in order to distinguish the specific
modeN. Here

kn
25S pp

A D 21S qp

B D 2, ~A7!

E fn
2dS5

1

kn
2 5C̃2

AB

4
, ~A8!

which givesC̃52/knAAB. Then

I n05E dSfnf0

5
2

AAB
E E dtds

kn
A12

t2

a2
2
s2

b2
cos

ppt

A
cos

qps

B
,

~A9!

which becomes

knI n05
4pab

AAB
E
0

1

sdsA12s2J0~sAm21n2!

5
4pab

AAB
j 1~Am21n2!

Am21n2
, ~A10!

where m5ppa/A, n5qpb/B, and j 1(Am21n2) is the
spherical Bessel function of order 1.

For largeA, B, p, andq we can convert the sum overp
andq in Eq. ~A5! to an integral by writing

2ap

A (
p

5E dm,
2bp

B (
q

5E dn. ~A11!

Equation~A5! then becomes

x5
4p2ab j1

2~l0!/l0
2

E E dmdn
~m2/a21n2/b2! j 1

2~l!

l2Am2/a21n2/b22k2

, ~A12!

where l0
25P2p2a2/A21Q2p2b2/B2, l25m21n2, and

where the limits onm andn are extended to2` to `. By
making the change of variablesm5lcosa, n5lsina, the
integral in the denominator of Eq.~A12! can be rewritten as

E
0

`

dl j 1
2~l!E

0

2p

daS Acos2a/a21sin2a/b2

1
k2

2l2Acos2a/a21sin2a/b2
D . ~A13!

We will need the results
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E
0

2p

daAcos2a/a21sin2a/b254E~m!/b, ~A14!

where

E~m![E
0

p/2

dfA12~12b2/a2!sin2f ~A15!

is an elliptic integral of the second kind, with
m[12b2/a2,

E
0

2p da

Acos2a/a21sin2a/b2
54bK~m!, ~A16!

where

K~m![E
0

p/2 df

A12msin2f
~A17!

is an elliptic integral of the first kind, and

E
0

`

j 1
2~l!dl5p/6, ~A18!

E
0

` j 1
2~l!dl

l2 5p/15. ~A19!

With the aid of these results, Eq.~A12! can be written in the
form

x5Fpab j1
2~l0!

l0
2 G YFE~m!

6b S 11
k2b2

5

K~m!

E~m! D G .
~A20!

By expanding the numerator for smalll0, j 1
2(l0)/l0

2

5(12l0
2/5)/9, we have

x5x0F12
P2p2a2

5A2 2
Q2p2b2

5B2 2
k2b2K~m!

5E~m! G ~A21!

or

x5x0F12
P̃2a2

5
2
Q̃2b2

5
2
k2b2K~m!

5E~m!
G , ~A22!

whereP̃5Pp/A, Q̃5Qp/B, andx0 is the static polarizabil-
ity for an elliptical hole@3#,

1

x0 5
3

2pab2
E~m!. ~A23!

APPENDIX B: EXPLICIT DERIVATION
OF THE SUSCEPTIBILITY

Here we present the detailed calculation of the suscepti-
bilities from the variational form of Eqs.~3.8! and~3.9!. We
first find the magnetic field tangent to the hole at the hole
location in the absence of the hole.

For TM modes we write

Hn50, ~B1!

H'5Cn̂3“f cos
l pn

L
. ~B2!

Then from

E dvH251 ~B3!

we haveC252/L and

HM
2 ~0!5

2

L
„¹fN~0!…2. ~B4!

For TE modes we write

H'5C̃“c cos
l pn

L
, ~B5!

Hn52C̃
L

l p
yN
2c sin

l pn

L
. ~B6!

Then from Eq.~B3! we obtainC̃252l 2p2/L3kNl
2 and

HM
2 ~0!5

2l 2p2

L3kNl
2 „¹cN~0!…2. ~B7!

Using Eqs.~3.8!, ~3.9!, and~3.17! we have

cTM5
2~ I N08 1I N09 !2

„¹fN~0!…2(
, ~B8!

cTE5
2YN0

2

„¹cN~0!…2(
, ~B9!

where(, defined in Eq.~3.10!, is now written as

( 5k2(
nÞN

~ I n08 1I n09 !2/Axn22k22 (
nÞN

Ayn22k2Yn0
2 .

~B10!

In order to find expressions forfN andcN we consider
the same rectangular cavity as in the case of the polarizabil-
ity. We choose the magnetic field to be in thes direction.
Therefore, for the TM case we have

fn5C sin
ppt

A
cos

qps

B
, ~B11!

wherep is even andq is odd, in order to satisfy the proper
boundary conditions att56A/2, s56B/2, respectively,
andC52/xnAAB. Using Eq.~3.13!,

xnI n08 52
2b

AAB
E E ududvsinS ppau

A D
3cosS qpbv

B D Y A12u22v2, ~B12!

which becomes
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xnI n08 52
4pbm

AABAm21n2

3E
0

1dss2J1~sAm21n2!

A12s2
, ~B13!

wherem5ppa/A, n5qpb/B. And using

E
0

1

dss2~12s2!n21/2J1~sl!5
G~n11/2!Jn13/2~l!

2~l/2!n11/2 ,

~B14!

we obtain

xnI n08 52
4pbm j 1~Am21n2!

AABAm21n2
. ~B15!

Using Eq.~3.14!,

xnI n09 5
2ba2xn

2

AAB
E E ududv

3sinS ppau

A D cosS qpbv
B DaA12u22v2,

~B16!

which becomes

xnI n09 5
4pbmaa2xn

2 j 2~Am21n2!

AAB~m21n2!
. ~B17!

For the TE case

cn5C̃cos
ppt

A
sin
qps

B
, ~B18!

wherep is even andq is odd, in order to satisfy the proper
boundary conditions att56A/2, s56B/2, respectively.
Using Eq.~3.16!, we find

ynYn052
2a

AAB
E E vdudv

3cosS ppau

A D sinS qpbv
B D Y A12u22v2,

~B19!

from which we obtain

ynYn052
4pan j 1~Am21n2!

AABAm21n2
. ~B20!

By converting the sum overp and q in Eq. ~B9! to an
integral, for the TE case we have

cTE52
4p2a3b j1

2~l0!

k2l0
2 YFE E dmdn~ I n08 1I n09 !2

Am2/a21n2/b22k2

2
a2

k2b2E E dmdnn2 j 1
2~l!Am2/a21n2/b22k2

l2~m2/a21n2/b2! G .
~B21!

Using Eqs.~B15! and ~B17! we rewrite the first integral in
the denominator of Eq.~B21! as I 11I 21I 3, where

I 15E E dmdnm2 j 1
2~Am21n2!

Am2

a2
1

n2

b2
2k2S m2

a2
1

n2

b2D ~m21n2!

,

~B22!

I 25E E dmdn
22aa2m2 j 1~Am21n2! j 2~Am21n2!

Am2/a21n2/b22k2@~m21n2!3/2#
,

~B23!

I 35E E dmdn
a2a2~m2/a21n2/b2!m2 j 2

2~Am21n2!

Am2/a21n2/b22k2@~m21n2!2#
,

~B24!

for which we obtain

I 15
4b3p

15m FE~m!1~m21!K~m!

12m G , ~B25!

with m512b2/a2,

I 2522aa2
p

30

4b

m
@K~m!2E~m!#, ~B26!

and

I 35a2a4
p

10

4

3bm
D~m!, ~B27!

whereD(m) is given in Eq.~4.17!. The second integral in
the denominator of Eq.~B21! can be rewritten asI 01I 4,
where

I 05
4b

m

p

6
@E~m!1~m21!K~m!# ~B28!

and

I 452
k2

2

p

15

4b3

m
@K~m!2E~m!#. ~B29!

Putting Eqs. ~B25!–~B29! in Eq. ~B21! and expanding
j 1
2(l0)/l0

2 for smalll0, we finally obtain
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cTE5css
0 H 12

l0
2

5
1
k2b2

5 F21
K~m!2E~m!

~m21!K~m!1E~m!

22a
K~m!2E~m!

~m21!K~m!1E~m!

1
a2

12m S K~m!2E~m!

~m21!K~m!1E~m!

1
m@2E~m!2K~m!#

~m21!K~m!1E~m!
D G J , ~B30!

wherecss
0 is the static susceptibility of an elliptical hole@3#,

1

css
0 5

3@~m21!K~m!1E~m!#

2pb2am
. ~B31!

Note that for the circular hole limit

b→a, m512b2/a2→0,

E~m!→
p

2
~12m/4!, K~m!→

p

2
~11m/4!,

we recover our result for the circular hole@1#,

cTE5c0F12
l0
2

5
1
k2a2

5
~322a13a2!G . ~B32!

For the TM modes we use Eq.~B8! and, after the same
procedure as for the TE modes, we obtain

cTM5css
0 H 12

l0
2

5 S 112a
a2xN

2

l0
2 D 1

k2b2

5 F2
1

K~m!2E~m!

~m21!K~m!1E~m!
22a

K~m!2E~m!

~m21!K~m!1E~m!

1
a2

12m S K~m!2E~m!

~m21!K~m!1E~m!

1
m@2E~m!2K~m!#

~m21!K~m!1E~m! D G J . ~B33!

For the circular hole limit we again recover our earlier result
@1#,

cTM

c0 512
l0
2

5
~112a!1

k2a2

5
~322a13a2!. ~B34!

We now use the fact that Eqs.~B30! and~B33! are varia-
tional forms with respect to the parametera. The minimum
values ofc occur when

aTE5
~m21!@K~m!2E~m!#

~m21!K~m!1E~m!~122m!
, ~B35!

aTM5
~m21!@K~m!2E~m!2xN

2a2/k2b2#

~m21!K~m!1E~m!~122m!
, ~B36!

leading finally to

cTE5css
0 F11k2b2SD2

l0
2

5k2b2D G , ~B37!

cTM5css
0 F11k2b2SD2

l0
2

5k2b2
F1

3

5k4b4
GD G ,

~B38!

where

D5
1

5 F21
E~m!m@K~m!2E~m!#

@~m21!K~m!1E~m!#D~m!G , ~B39!

F511
a2xN

2

l0
2

~12m!@K~m!2E~m!#

D~m!
, ~B40!

G5a4xN
4 ~12m!@E~m!1K~m!~m21!#

D~m!
. ~B41!

HerexN
25P2p2/A21Q2p2/B2, l0

25P2p2a2/A21Q2p2b2/
B2.

APPENDIX C: THE MAGNETIC FIELD ALONG THE
LONGEST DIMENSION OF THE HOLE

Here we present results for the case when the magnetic
field is aligned along the longest dimension of the hole. We
again choose the magnetic field in the azimuthal direction.
Then we haveb.a and the elliptic integrals in our expres-
sions should be changed according to

E~m!→
b

a
E~m̃!, ~C1!

K~m!→
a

b
K~m̃!, ~C2!

m→2
b2

a2
m̃, ~C3!

with m̃512a2/b2.
Thenx in Eq. ~4.1! should be replaced by

x̃5x0F11ett
a2

5
1ess

b2

5
1
k2a2

5

K~m̃!

E~m̃!
G . ~C4!

Correspondingly,c in Eq. ~4.4! should be replaced by

c̃5c tt
0 F11

a2

5
htt
s1

b2

5
hss
s 1

k2b2

5
~ ũ12ṽa1a2w̃!

2
2

5
aa2~hts

t 2htt
s !G , ~C5!

where

ũ521
K~m̃!~m̃21!1E~m̃!

K~m̃!2E~m̃!
, ~C6!
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ṽ52
K~m̃!~m̃21!1E~m̃!

K~m̃!2E~m̃!
, ~C7!

w̃5
~m̃21!K~m̃!1~m̃11!E~m̃!

K~m̃!2E~m̃!
. ~C8!

Finally

c̃5c tt
0 F11

a2

5
htt
s1

b2

5
hss
s 1

k2b2

5
Ã1

2

5
a2B̃~hts

t 2htt
s !

2
1

5

a4

k2b2
C̃~hts

t 2htt
s !2G , ~C9!

with

Ã521
m̃E~m̃!

K~m̃!2E~m̃!
F K~m̃!~m̃21!1E~m̃!

~m̃11!E~m̃!1K~m̃!~m̃21!
G ,

~C10!

B̃52
K~m̃!~m̃21!1E~m̃!

~m̃11!E~m̃!1K~m̃!~m̃21!
, ~C11!

C̃5
K~m̃!2E~m̃!

~m̃11!E~m̃!1K~m̃!~m̃21!
. ~C12!
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